Cancer Institute A national cancer institute
designated cancer center

Garry Nolan

Publication Details

  • Alternate Mechanisms of Initial Pattern Recognition Drive Differential Immune Responses to Related Poxviruses CELL HOST & MICROBE O'Gorman, W. E., Sampath, P., Simonds, E. F., Sikorski, R., O'Malley, M., Krutzik, P. O., Chen, H., Panchanathan, V., Chaudhri, G., Karupiah, G., Lewis, D. B., Thorne, S. H., Nolan, G. P. 2010; 8 (2): 174-185


    Vaccinia immunization was pivotal to successful smallpox eradication. However, the early immune responses that distinguish poxvirus immunization from pathogenic infection remain unknown. To address this, we developed a strategy to map the activation of key signaling networks in vivo and applied this approach to define and compare the earliest signaling events elicited by immunizing (vaccinia) and lethal (ectromelia) poxvirus infections in mice. Vaccinia induced rapid TLR2-dependent responses, leading to IL-6 production, which then initiated STAT3 signaling in dendritic and T cells. In contrast, ectromelia did not induce TLR2 activation, and profound mouse strain-dependent responses were observed. In resistant C57BL/6 mice, the STAT1 and STAT3 pathways were rapidly activated, whereas in susceptible BALB/c mice, IL-6-dependent STAT3 activation did not occur. These data link early immune signaling events to infection outcome and suggest that activation of different pattern-recognition receptors early after infection may be important in determining vaccine efficacy.

    View details for DOI 10.1016/j.chom.2010.07.008

    View details for Web of Science ID 000281169600007

    View details for PubMedID 20709294

Stanford Medicine Resources:

Footer Links: