Cancer Institute A national cancer institute
designated cancer center

Quynh-Thu Le

Publication Details

  • Dose reconstruction for volumetric modulated arc therapy (VMAT) using cone-beam CT and dynamic log files PHYSICS IN MEDICINE AND BIOLOGY Qian, J., Lee, L., Liu, W., Chu, K., Mok, E., Luxton, G., Le, Q., Xing, L. 2010; 55 (13): 3597-3610

    Abstract:

    Volumetric modulated arc therapy (VMAT) has recently emerged as a new clinical modality for conformal radiation therapy. The aim of this work is to establish a methodology and procedure for retrospectively reconstructing the actual dose delivered in VMAT based on the pre-treatment cone-beam computed tomography (CBCT) and dynamic log files. CBCT was performed before the dose delivery and the system's log files were retrieved after the delivery. Actual delivery at a control point including MLC leaf positions, gantry angles and cumulative monitor units (MUs) was recorded in the log files and the information was extracted using in-house developed software. The extracted information was then embedded into the original treatment DICOM-radiation therapy (RT) file to replace the original control point parameters. This reconstituted DICOM-RT file was imported into the Eclipse treatment planning system (TPS) and dose was computed on the corresponding CBCT. A series of phantom experiments was performed to show the feasibility of dose reconstruction, validate the procedure and demonstrate the efficacy of this methodology. The resultant dose distributions and dose-volume histograms (DVHs) were compared with those of the original treatment plan. The studies indicated that CBCT-based VMAT dose reconstruction is readily achievable and provides a valuable tool for monitoring the dose actually delivered to the tumor target as well as the sensitive structures. In the absence of setup errors, the reconstructed dose shows no significant difference from the original pCT-based plan. It is also elucidated that the proposed method is capable of revealing the dosimetric changes in the presence of setup errors. The method reported here affords an objective means for dosimetric evaluation of VMAT delivery and is useful for adaptive VMAT in future.

    View details for DOI 10.1088/0031-9155/55/13/002

    View details for Web of Science ID 000279004300002

    View details for PubMedID 20526034

Stanford Medicine Resources:

Footer Links: