Cancer Institute A national cancer institute
designated cancer center

Edward Graves

Publication Details

  • Commissioning of a novel microCT/RT system for small animal conformal radiotherapy PHYSICS IN MEDICINE AND BIOLOGY Rodriguez, M., Zhou, H., Keall, P., Graves, E. 2009; 54 (12): 3727-3740

    Abstract:

    The purpose of this work was to commission a 120 kVp photon beam produced by a micro-computed tomography (microCT) scanner for use in irradiating mice to therapeutic doses. A variable-aperture collimator has been integrated with a microCT scanner to allow the delivery of beams with pseudocircular profiles of arbitrary width between 0.1 and 6.0 cm. The dose rate at the isocenter of the system was measured using ion chamber and gafchromic EBT film as 1.56-2.13 Gy min(-1) at the water surface for field diameters between 0.2 and 6.0 cm. The dose rate decreases approximately 10% per every 5 mm depth in water for field diameters between 0.5 and 1.0 cm. The flatness, symmetry and penumbra of the beam are 3.6%, 1.0% and 0.5 mm, respectively. These parameters are sufficient to accurately conform the radiation dose delivered to target organs on mice. The irradiated field size is affected principally by the divergence of the beam. In general, the beam has appropriate dosimetric characteristics to accurately deliver the dose to organs inside the mice's bodies. Using multiple beams delivered from a variety of angular directions, targets as small as 2 mm may be irradiated while sparing surrounding tissue. This microCT/RT system is a feasible tool to irradiate mice using treatment planning and delivery methods analogous to those applied to humans.

    View details for DOI 10.1088/0031-9155/54/12/008

    View details for Web of Science ID 000266582300008

    View details for PubMedID 19478377

Stanford Medicine Resources:

Footer Links: