Cancer Institute A national cancer institute
designated cancer center

Christopher H. Contag

Publication Details

  • siRNA silencing of keratinocyte-specific GFP expression in a transgenic mouse skin model GENE THERAPY Gonzalez-Gonzalez, E., Ra, H., Hickerson, R. P., Wang, Q., Piyawattanametha, W., Mandella, M. J., Kino, G. S., Leake, D., Avilion, A. A., Solgaard, O., Doyle, T. C., Contag, C. H., Kaspar, R. L. 2009; 16 (8): 963-972

    Abstract:

    Small interfering RNAs (siRNAs) can be designed to specifically and potently target and silence a mutant allele, with little or no effect on the corresponding wild-type allele expression, presenting an opportunity for therapeutic intervention. Although several siRNAs have entered clinical trials, the development of siRNA therapeutics as a new drug class will require the development of improved delivery technologies. In this study, a reporter mouse model (transgenic click beetle luciferase/humanized monster green fluorescent protein) was developed to enable the study of siRNA delivery to skin; in this transgenic mouse, green fluorescent protein reporter gene expression is confined to the epidermis. Intradermal injection of siRNAs targeting the reporter gene resulted in marked reduction of green fluorescent protein expression in the localized treatment areas as measured by histology, real-time quantitative polymerase chain reaction and intravital imaging using a dual-axes confocal fluorescence microscope. These results indicate that this transgenic mouse skin model, coupled with in vivo imaging, will be useful for development of efficient and 'patient-friendly' siRNA delivery techniques and should facilitate the translation of siRNA-based therapeutics to the clinic for treatment of skin disorders.

    View details for DOI 10.1038/gt.2009.62

    View details for Web of Science ID 000268916800004

    View details for PubMedID 19474811

Stanford Medicine Resources:

Footer Links: