Cancer Institute A national cancer institute
designated cancer center

Debra M. Ikeda, M.D.

Publication Details

  • Motion correction and lipid suppression for H-1 magnetic resonance spectroscopy Star-Lack, J. M., Adalsteinsson, E., Gold, G. E., Ikeda, D. M., Spielman, D. M. JOHN WILEY & SONS INC. 2000: 325-330

    Abstract:

    Spectral/spatial spin-echo pulses with asymmetric excitation profiles were incorporated into a PRESS-based localization sequence to provide lipid suppression while retaining a sufficient amount of water to allow for correction of motion-induced shot-to-shot phase variations. 1H magnetic resonance spectroscopy data were acquired at 1.5 Tesla from a motion phantom and in vivo from the human liver, kidney, and breast. The results demonstrated that lipids in the chemical shift stopband were completely suppressed and that full metabolite signal intensity was maintained after implementation of a regularization algorithm based on phasing the residual water signal. Liver and kidney spectra contained a large resonance at 3.2 ppm that was ascribed to trimethylammonium moieties (betaine plus choline) and a weaker signal at 3.7 ppm that may result from glycogen. A breast spectrum from a histologically proven invasive ductal carcinoma displayed a highly elevated choline signal (3.2 ppm) relative to that from a normal volunteer.

    View details for Web of Science ID 000085559100001

    View details for PubMedID 10725872

Stanford Medicine Resources:

Footer Links: