Cancer Institute A national cancer institute
designated cancer center

Frank E. Stockdale

Publication Details

  • TEMPORAL APPEARANCE OF SATELLITE CELLS DURING MYOGENESIS DEVELOPMENTAL BIOLOGY Feldman, J. L., Stockdale, F. E. 1992; 153 (2): 217-226

    Abstract:

    In this study, differences between fetal and adult myoblasts in clonal and high density culture have been used to determine when adult myoblasts can first be detected during avian development. The results indicate that avian adult myoblasts are apparent as a distinct population of myoblasts during the midfetal stage of development. Three different criteria were used to differentiate fetal and adult myoblasts and demonstrate when adult myoblasts become a major proportion of the myoblast population: (1) differences in slow myosin heavy chain 1 (MHC1) isoform expression, (2) initiation of DNA synthetic activity, and (3) average myoblast length. Fetal chicken (ED10-12) pectoralis muscle (PM) myoblasts form myotubes that express slow MHC1 after prolonged culture, while adult chicken PM myoblasts do not. Fetal avian myoblasts were active in DNA synthesis and large when first isolated, reaching peak rates of synthesis by 24 hr in culture, while adult myoblasts were inactive in DNA synthesis and small when first isolated, only reaching peak rates of DNA synthesis and size at 3 days of incubation. A dramatic decrease in the percentage of muscle colonies with fibers that expressed slow MHC1 was observed between the midfetal stage and hatching in the chicken, along with a corresponding decrease in myoblast DNA synthetic activity and average length during this same period in both the chicken and the quail. Myoblast activity and average length increased again 3-4 days posthatch and a small transient increase in the number of slow MHC1-expressing clones was also associated with the massive growth of muscle that occurs in the neonatal bird. We conclude that adult myoblasts are present as a distinct population of myoblasts at least as early as the midfetal stages of avian development.

    View details for Web of Science ID A1992JR32700004

    View details for PubMedID 1397679

Stanford Medicine Resources:

Footer Links: