Cancer Institute A national cancer institute
designated cancer center

Howard Y. Chang

Publication Details

  • ACTIVE-SITE MUTANTS OF HUMAN CYCLOPHILIN-A SEPARATE PEPTIDYL-PROLYL ISOMERASE ACTIVITY FROM CYCLOSPORINE-A BINDING AND CALCINEURIN INHIBITION PROTEIN SCIENCE ZYDOWSKY, L. D., Etzkorn, F. A., Chang, H. Y., Ferguson, S. B., STOLZ, L. A., Ho, S. I., Walsh, C. T. 1992; 1 (9): 1092-1099

    Abstract:

    Based on recent X-ray structural information, six site-directed mutants of human cyclophilin A (hCyPA) involving residues in the putative active site--H54, R55, F60, Q111, F113, and H126--have been constructed, overexpressed, and purified from Escherichia coli to homogeneity. The proteins W121A (Liu, J., Chen, C.-M., & Walsh, C.T., 1991a, Biochemistry 30, 2306-2310), H54Q, R55A, F60A, Q111A, F113A, and H126Q were assayed for cis-trans peptidyl-prolyl isomerase (PPIase) activity, their ability to bind the immunosuppressive drug cyclosporin A (CsA), and protein phosphatase 2B (calcineurin) inhibition in the presence of CsA. Results indicate that H54Q, Q111A, F113A, and W121A retain 3-15% of the catalytic efficiency (kcat/Km) of wild-type recombinant hCyPA. The remaining three mutants (R55A, F60A, and H126Q) each retain less than 1% of the wild-type catalytic efficiency, indicating participation by these residues in PPIase catalysis. Each of the mutants bound to a CsA affinity matrix. The mutants R55A, F60A, F113A, and H126Q inhibited calcineurin in the presence of CsA, whereas W121A did not. Although CsA is a competitive inhibitor of PPIase activity, it can complex with enzymatically inactive cyclophilins and inhibit the phosphatase activity of calcineurin.

    View details for Web of Science ID A1992JR69300003

    View details for PubMedID 1338979

Stanford Medicine Resources:

Footer Links: