Cancer Institute A national cancer institute
designated cancer center

Robert Negrin

Publication Details

  • Maintenance treatment of the anemia of myelodysplastic syndromes with recombinant human granulocyte colony-stimulating factor and erythropoietin: Evidence for in vivo synergy BLOOD Negrin, R. S., Stein, R., Doherty, K., Cornwell, J., Vardiman, J., Krantz, S., Greenberg, P. L. 1996; 87 (10): 4076-4081

    Abstract:

    Patients with myelodysplastic syndromes (MDS) have refractory cytopenias leading to transfusion requirements and infectious complications. In vitro marrow culture data have indicated that granulocyte colony stimulating factor (G-CSF) synergizes with erythropoietin (EPO) for the production of erythroid precursors. In an effort to treat the anemia and neutropenia in this disorder, MDS patients were treated with a combination of recombinant human EPO and recombinant human G-CSF. Fifty-five patients were enrolled in the study of which 53 (96%) had a neutrophil response. Forty-four patients were evaluable for an erythroid response of which 21 (48%) responded. An erythroid response was significantly more likely in those patients with relatively low serum EPO levels, higher absolute basal reticulocyte counts and normal cytogenetics at study entry. Seventeen (81%) of the patients who responded to combined G-CSF plus EPO therapy continued to respond during an 8-week maintenance phase. G-CSF was then discontinued and all patients' neutrophil responses were diminished, whereas 8 continued to have an erythroid response to EPO alone. In 7 of the remaining 9 patients, resumption of G-CSF was required for recurrent erythroid responses. The median duration of erythroid responses to these cytokines was 11 months, with 6 patients having relatively prolonged and durable responses for 15 to 36 months. Our results also indicate that approximately one half of responding patients require both G-CSF and EPO to maintain an effective erythroid response, suggesting that synergy between G-CSF and EPO exists in vivo for the production of red blood cells in MDS.

    View details for Web of Science ID A1996UK87900007

    View details for PubMedID 8639764

Stanford Medicine Resources:

Footer Links: