Cancer Institute A national cancer institute
designated cancer center

Frank E. Stockdale

Publication Details

  • DIFFERENCES IN THE DEVELOPMENTAL FATE OF CULTURED AND NONCULTURED MYOBLASTS WHEN TRANSPLANTED INTO EMBRYONIC LIMBS EXPERIMENTAL CELL RESEARCH DiMario, J. X., Stockdale, F. E. 1995; 216 (2): 431-442

    Abstract:

    Myoblasts from embryonic, fetal, and adult quail and chick muscles were transplanted into limb buds of chick embryos to determine if myoblasts can form muscle fibers in heterochronic limbs and to define the conditions that affect the ability of transplanted cells to populate newly developing limb musculature. Myoblasts from each developmental stage were either freshly isolated and transplanted or were cultured prior to transplantation into limb buds of 4- to 5-day (ED4-5) chick embryos. Transplanted myoblasts, regardless of the age of the donor from which they were derived, formed muscle fibers within embryonic limb muscles. Transplanted cloned myoblasts formed muscle fibers, although there was little evidence that the number of transplanted myoblasts significantly increased following transplantation or that they migrated any distance from the site of injection. The fibers that formed from transplanted clonal myoblasts often did not persist in the host limb muscles until ED10. Diminished fiber formation from myoblasts transplanted into host limbs was observed whether myoblasts were cloned or cultured at high density. However, when freshly isolated myoblasts were transplanted, the fibers they formed were numerous, widely dispersed within the limb musculature, and persisted in the muscles until at least ED10. These results indicate that transplanted myoblasts of embryonic, fetal, and adult origin are capable of forming fibers during early limb muscle formation. They also indicate that even in an embryonic chick limb where proliferation of endogenous myoblasts and muscle fiber formation is rapidly progressing, myoblasts that are cultured in vitro do not substantially contribute to long-term muscle fiber formation after they are transplanted into developing limbs. However, when the same myoblasts are freshly isolated and transplanted without prior cell culture, substantial numbers of fibers form and persist after transplantation into developing limbs. Thus, these studies demonstrate that the extent to which transplanted myoblasts fuse to form fibers which persist in host musculature depends upon whether donor myoblasts are freshly isolated or maintained in vitro prior to injection.

    View details for Web of Science ID A1995QG01400019

    View details for PubMedID 7843288

Stanford Medicine Resources:

Footer Links: