Cancer Institute A national cancer institute
designated cancer center

Edward Graves

Publication Details

  • Monte Carlo model of the scanning beam digital x-ray (SBDX) source PHYSICS IN MEDICINE AND BIOLOGY Bazalova, M., Weil, M. D., Wilfley, B., Graves, E. E. 2012; 57 (22): 7381-7394

    Abstract:

    The scanning-beam digital x-ray (SBDX) system has been developed for fluoroscopic imaging using an inverse x-ray imaging geometry. The SBDX system consists of a large-area x-ray source with a multihole collimator and a small detector. The goal of this study was to build a Monte Carlo (MC) model of the SBDX source as a useful tool for optimization of the SBDX imaging system in terms of its hardware components and imaging parameters. The MC model of the source was built in the EGSnrc/BEAMnrc code and validated using the DOSXYZnrc code and Gafchromic film measurements for 80, 100, and 120 kV x-ray source voltages. The MC simulated depth dose curves agreed with measurements to within 5%, and beam profiles at three selected depths generally agreed within 5%. Exposure rates and half-value layers for three voltages were also calculated from the MC simulations. Patient skin-dose per unit detector-dose was quantified as a function of patient size for all three x-ray source voltages. The skin-dose to detector-dose ratio ranged from 5-10 for a 20 cm thick patient to 1 × 10(3)-1 × 10(5) for a 50 cm patient for the 120 and 80 kV beams, respectively. Simulations of imaging dose for a prostate patient using common imaging parameters revealed that skin-dose per frame was as low as 0.2 mGy.

    View details for DOI 10.1088/0031-9155/57/22/7381

    View details for Web of Science ID 000310838700014

    View details for PubMedID 23093305

Stanford Medicine Resources:

Footer Links: