Cancer Institute A national cancer institute
designated cancer center

Christopher H. Contag

Publication Details

  • Adoptive immunotherapy of experimental autoimmune encephalomyelitis via T cell delivery of the IL-12 p40 subunit JOURNAL OF IMMUNOLOGY Costa, G. L., Sandora, M. R., Nakajima, A., Nguyen, E. V., Taylor-Edwards, C., Slavin, A. J., Contag, C. H., Fathman, C. G., Benson, J. M. 2001; 167 (4): 2379-2387


    CD4+ T cells are believed to play a central role in the initiation and perpetuation of autoimmune diseases such as multiple sclerosis. In the murine model for multiple sclerosis, experimental autoimmune encephalomyelitis, pathogenic T cells exhibit a Th1-like phenotype characterized by heightened expression of proinflammatory cytokines. Systemic administration of "regulatory" cytokines, which serve to counter Th1 effects, has been shown to ameliorate autoimmune responses. However, the inherent problems of nonspecific toxicity limit the usefulness of systemic cytokine delivery as a potential therapy. Therefore, we used the site-specific trafficking properties of autoantigen-reactive CD4+ T cells to develop an adoptive immunotherapy protocol that provided local delivery of a Th1 cytokine antagonist, the p40 subunit of IL-12. In vitro analysis demonstrated that IL-12 p40 suppressed IFN-gamma production in developing and effector Th1 populations, indicating its potential to modulate Th1-promoted inflammation. We have previously demonstrated that transduction of myelin basic protein-specific CD4+ T cells with pGC retroviral vectors can result in efficient and stable transgene expression. Therefore, we adoptively transferred myelin basic protein-specific CD4+ T cells transduced to express IL-12 p40 into mice immunized to develop experimental autoimmune encephalomyelitis and demonstrated a significant reduction in clinical disease. In vivo tracking of bioluminescent lymphocytes, transduced to express luciferase, using low-light imaging cameras demonstrated that transduced CD4+ T cells trafficked to the central nervous system, where histological analysis confirmed long-term transgene expression. These studies have demonstrated that retrovirally transduced autoantigen-specific CD4+ T cells inhibited inflammation and promoted immunotherapy of autoimmune disorders.

    View details for Web of Science ID 000170949600070

    View details for PubMedID 11490028

Stanford Medicine Resources:

Footer Links: