Cancer Institute A national cancer institute
designated cancer center

Ann M. Arvin

Publication Details

  • Signal transducer and activator of transcription 3 (STAT3) and survivin induction by varicella-zoster virus promote replication and skin pathogenesis PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Sen, N., Che, X., Rajamani, J., Zerboni, L., Sung, P., Ptacek, J., Arvin, A. M. 2012; 109 (2): 600-605


    Varicella-zoster virus (VZV) is a human ?-herpesvirus that causes varicella (chickenpox) during primary infection and zoster (shingles) upon reactivation. Like other viruses, VZV must subvert the intrinsic antiviral defenses of differentiated human cells to produce progeny virions. Accordingly, VZV inhibits the activation of the cellular transcription factors IFN regulatory factor 3 (IRF3) and signal transducers and activators of transcription 1 (STAT1), thereby downregulating antiviral factors, including IFNs. Conversely, in this study, we found that VZV triggers STAT3 phosphorylation in cells infected in vitro and in human skin xenografts in SCID mice in vivo and that STAT3 activation induces the anti-apoptotic protein survivin. Small-molecule inhibitors of STAT3 phosphorylation and survivin restrict VZV replication in vitro, and VZV infection of skin xenografts in vivo is markedly impaired by the administration of the phospho-STAT3 inhibitor S3I-201. STAT3 and survivin are required for malignant transformation caused by ?-herpesviruses, such as Kaposi's sarcoma virus. We show that STAT3 activation is also critical for VZV, a nononcogenic herpesvirus, via a survivin-dependent mechanism. Furthermore, STAT3 activation is critical for the life cycle of the virus because VZV skin infection is necessary for viral transmission and persistence in the human population. Therefore, we conclude that takeover of this major cell-signaling pathway is necessary, independent of cell transformation, for herpesvirus pathogenesis and that STAT3 activation and up-regulation of survivin is a common mechanism important for the pathogenesis of lytic as well as tumorigenic herpesviruses.

    View details for DOI 10.1073/pnas.1114232109

    View details for Web of Science ID 000298950200053

    View details for PubMedID 22190485

Stanford Medicine Resources:

Footer Links: