Kidman, Urban help raise funds for Women’s Cancer Program at Stanford

A cademy Award-winning actress Nicole Kidman knows firsthand how devastating it can be when a family member suffers from cancer. Her mother, Janelle, was diagnosed with breast cancer when Kidman was 17. She was successfully treated and remains cancer-free today.

“I think that was the pivotal point in my life because I was about to lose—or thought I would lose—the most important person in my family, the heartbeat of my family,” Kidman told a crowd of 350 people in late November in Menlo Park, Calif. Kidman said she prayed for her mother’s survival, resolving then to commit to helping other women who faced the threat of cancer.

The actress and her husband, country music star Keith Urban, made a rare Bay Area appearance at a lunch-eon at the Sharon Heights Golf & Country Club to support the Women’s Cancer Program at Stanford. The event raised over $322,000 in gifts and commitments to benefit the program.

Kidman spoke passionately on the issue of women’s health, while Urban, a two-time Grammy Award-winner, treated the audience to three tunes from his catalog.

Kidman came to Stanford at the invitation of Jonathan Berek, MD, professor and chair of obstetrics and gynecology, director of the Women’s Cancer Program and a longtime friend of the actress. He introduced Kidman to the array of research and clinical programs in women’s cancer that are under way at Stanford.

“I so believe in the work of the researchers and scholars here,” Kidman told the audience. She said she was optimistic about the prospects for a cure.

“I truly believe in my lifetime it can happen, but it will take a tremendous amount of support,” she said.

Berek said researchers at Stanford are attacking women’s cancers on multiple fronts. He is an internationally known expert in ovarian cancer, a disease that is particularly difficult to manage because of a lack of effective prevention and screening tools. He and his colleagues are currently working to develop therapeutic vaccines for ovarian cancer, to complement the human papilloma virus vaccine that effectively prevents cervical cancer.

Berek noted that the medical center has a unique program in cancer stem cells, which are believed to be at the root of all malignancies. Michael Clarke, MD, professor of medicine, first identified the breast cancer stem cell and is working with Irving Weissman, MD, director of the Stanford Institute for Stem Cell Biology and Regenerative Medicine, in characterizing the ovarian cancer stem cell. Both Clarke and...
Researchers at Stanford and our partners at the Cancer Prevention Institute of California have played important roles in identifying risk factors for breast cancer, including genetic and environmental factors.

It is our job to build on these advances to further improve therapy and our physicians are developing and implementing exciting clinical trials to meet this objective.

Improving the outcome of ovarian cancer has been more challenging due to the difficulty in diagnosing this disease early and in developing treatments that are curative. The Women’s Cancer Program is now galvanizing a group of talented basic and clinical investigators to meet this challenge in a collaborative undertaking that will extend from developing new diagnostic imaging techniques for ovarian cancer at an early stage, through the analysis and targeting of the ovarian cancer stem cell and the identification of biomarkers that predict response to specific chemotherapies, to the harnessing of the immune system against ovarian cancer cells.

We are grateful for the extraordinary support that the Women’s Cancer Program has received from our community. You have our word that this support will be used in the most effective way to advance our ability to treat our patients and to provide the support they need to deal with this devastating group of diseases.

SINCERELY,
Beverly S. Mitchell, MD
Director
Kidman said she prayed for her mother’s survival, resolving then to commit to helping other women who faced the threat of cancer.

Weisman are members of the Stanford Cancer Center.

In addition, intensive work is under way to develop drugs to interfere with some breast and ovarian cancers that are associated with specific genes, such as BRCA1 and BRCA2. Along with this drug development work, genetic screening techniques are being explored that could one day result in a simple, inexpensive blood test using genetic profiling; these tests not only could determine a woman’s chances of getting breast and ovarian or other gynecologic cancers, but also could tell physicians which treatment protocols are likely to be most effective.

The center also has numerous clinical trials in progress to develop innovative treatments. For instance, Ellie Guardino, MD, PhD, associate professor of medicine-oncology, is leading a study of a vaccine for treating breast cancer, and is investigating methods that corral the immune system in fighting the disease.

Guardino also described her own personal struggle as a cancer survivor. “I know firsthand the fear and anxiety that cancer brings,” she said. “I have a greater understanding and a deeper empathy for my patients,” who, she said, inspired her to press forward in her research to find better treatments.

Berek emphasized Stanford’s important role as a National Cancer Institute-designated Cancer Center in bringing together the various components of the Women’s Cancer Program. “By coordinating our efforts in breast and gynecologic cancers under the umbrella of a comprehensive research and treatment program, we hope to create even greater synergies between doctors and scientists working together with the common goal of curing women’s cancer,” Berek said.

The funds raised for the Women’s Cancer Program at Stanford will support research into the causes, treatment and prevention of breast, gynecologic and other cancers unique to women. The event was sponsored by Dianne and Tad Taube, through the Koret Foundation and Taube Philanthropies, and others. Lisa Schatz, former executive at Esprit and The Gap, chaired the event, along with Susie

“By coordinating our efforts in breast and gynecologic cancers under the umbrella of a comprehensive research and treatment program, we hope to create even greater synergies between doctors and scientists working together with the common goal of curing women’s cancer,” Berek said.
Meeting the challenges of women’s cancers

Breast oncology and gynecologic oncology programs combine resources in the Women’s Cancer Program and Center

About forty-five percent of cancers that develop in women occur in the breasts or reproductive system. Despite medical progress, over 192,000 cases of breast cancer and nearly 81,000 cases of gynecologic cancer were diagnosed in the United States in 2009. Over 68,000 women died from these diseases.

Researchers have yet to unlock the biological origins of these diseases or, in the case of some cancers, how to diagnose them in the curable stages. To complicate matters, some cancer cells resist treatment and recur.

The Stanford Cancer Center is responding to these challenges by founding the Women’s Cancer Program, a comprehensive research and treatment program that will shepherd discoveries from the laboratory into the clinic. At the end of this year, the clinical and translational programs will relocate to the Blake Wilbur Building immediately adjacent to the Cancer Center, and the first floor will be transformed into the Stanford Women’s Cancer Center.

The initiative seeks to better integrate the care of women and their families who are confronted with these diseases by strengthening the multidisciplinary model of women’s cancer care. The goal is to maximize the coordination of care, expedite management and improve the communication between the expert physicians.

This program and center unite experts and resources in one sensitive, women-centric program that will include emotional and practical support services during and following cancer therapy.

“There are many superb physicians at Stanford who deliver outstanding care to women with breast and gynecologic cancers, and recruitments of additional doctors and support personnel will be undertaken to expand and augment these programs, said Jonathan S. Berek, MD, MMS, director of the Stanford Women’s Cancer Program.

The Women’s Cancer Program also engages University experts involved in basic research, such as innovations in diagnostic imaging, the molecular classification of tumors and use of high-throughput sequencing approaches to analyze genetic changes in tumor cells.

Other researchers study cancer stem cells, invent robotic technologies that isolate pure circulating tumor cells from the blood of cancer patients and develop ways to diagnose cancer progression and determine the most effective treatment.

The program also fosters research into genetic risk factors and cancer susceptibility genes in specific populations of women, and translational studies that are designed to improve prevention, early diagnosis and treatment and patient outcomes.

“These collaborations should substantially strengthen the research and treatment capabilities of our programs,” Dr. Berek said.

Berek is a noted expert in gynecologic oncology, pelvic surgery and immunotherapy of ovarian and other gynecologic cancers. His research focuses on the development of novel therapies, vaccines and immunotherapies, and he pioneered the use of monoclonal antibody therapies for ovarian cancer. He chairs and is principal investigator of the Cooperative
Stanford researchers are developing several means to identify ovarian cancer at its early stages, when treatment is more likely to be effective.

Ovarian Cancer Group for Immunotherapy, which comprises scientists from 39 institutions in the United States and the United Kingdom.

EXPANDED EFFORTS IN OVARIAN CANCER RESEARCH
Unlike some other cancers, ovarian cancer often doesn’t present with obvious early symptoms. There may be no bleeding, pain or visible change in the body. As such, at the time of diagnosis, ovarian cancer is typically advanced.

Stanford researchers are developing several means to identify ovarian cancer at its early stages, when treatment is more likely to be effective. And they are generating new methods for imaging ovarian cancer and testing them in women genetically predisposed to the disease. They are also using blood samples from these women to study biological markers that may improve detection and treatment.

Although about 80 percent of women with ovarian cancer respond positively to chemotherapy at the beginning of treatment, the majority of ovarian cancers eventually develop resistance to chemotherapy. Stanford investigators are attempting to determine the basis for chemoresistance and develop personalized approaches to overcoming it.

Researchers in this group are developing a vaccine and cell-based therapy for ovarian cancer that they hope will someday become a more standard part of treatment for this disease. These innovative studies will open at Stanford later this year.

SPECIALIZED NEW TREATMENTS BASED ON STEM CELLS AND GENETICS OF BREAST AND OVARIAN CANCERS
Pioneering research into stem cell biology of breast and ovarian cancer is being conducted at Stanford, and this research has important implications for the development of new means of early detection and the treatment of these diseases.

Several chemotherapy studies under way in the Women’s Cancer Program are developing methods to reduce the threat of breast and ovarian cancer in women at high risk for these cancers. For example, our clinical researchers are conducting a study of drugs known as PARP inhibitors, which have been shown to prevent mammary tumors in mice without
FUNCTIONAL BRCA1 OR BRCA2 GENES. Mutations in these genes predispose to both breast and ovarian cancers. PARP inhibitors are being used for both prevention and treatment of breast and ovarian cancers.

While these drugs need to be fully evaluated, findings suggest that PARP inhibitors could form the basis for effective prevention strategies for women with inherited increased risk for breast and ovarian cancer risk. In addition, clinical trials using PARP inhibitors in women diagnosed with breast cancer and advanced ovarian cancer will open soon at Stanford.

Stanford scientists are also conducting intensive research using PARP inhibitors on “triple-negative” breast cancer, so called because it lacks receptors for the hormones estrogen and progesterone and the protein HER2. Our researchers have found that PARP inhibitors block the DNA repair mechanisms on which these cells depend, leading to the death of tumor cells. They have initiated a new clinical trial for pre-surgical treatment of triple-negative breast cancer that leverages this weakness by combining DNA-damaging chemotherapy with the enzyme inhibitor.

Other researchers are working on a clinical study of a vaccine to treat HER2-positive breast cancer. They hope the vaccine will eventually be used to prevent this type of cancer and that the approach might serve as the basis for vaccines against other types of breast cancer.

For information on these and other clinical studies for women’s cancers, visit: http://med.stanford.edu/clinicaltrials/

WHO SHOULD CONSIDER GENETIC TESTING?

Research has shown that breast, ovarian and other gynecologic cancers are intimately related and share a common genetic basis. The BRCA1 and BRCA2 mutations, which contribute to 5 to 10 percent of all breast and ovarian cancers, can be passed from either parent to their children, and in affected women can lead to a 50 to 80 percent chance of developing these diseases over their lifetime.

The Stanford Cancer Center offers genetic counseling and genetic testing for individuals concerned that they may be predisposed to developing breast and ovarian or other inherited cancers.

Our services include individualized cancer risk assessments based on medical and family history, detailed discussion of options for genetic testing and recommendations for preventive screening and treatments.

Our team includes genetic counselors, oncologists and geneticists. Genetic counseling involves a comprehensive personal risk analysis and education about the genetic mechanisms related to cancer. If indicated, genetic testing is offered, but only...
gynecologic cancers and develop interventional research on prevention and early detection. They also conduct population-based studies to promote healthy lifestyles and reduce cancer risk, as well as generate cancer prevention and treatment strategies to assess quality of life, cost-effectiveness and treatment outcomes.

One of the program’s key population scientists is Marcia L. Stefanick, PhD, professor of medicine and co-leader of the SCC’s Cancer Prevention and Control Program. Stefanick was the Stanford principal investigator and chair of the steering committee for the National Institutes of Health-sponsored Women’s Health Initiative (WHI), which since 1991 has been studying the most common causes of death, disability and impaired quality of life in postmenopausal women.

The WHI created a firestorm of controversy in 2002 by announcing that menopausal women who receive combined estrogen and progestin hormone therapy for more than five years are at a doubled risk for breast cancer.

In 2009, Stefanick was a lead author on a WHI follow-up study that reported that risk for breast cancer decreases to normal within one year after stopping the hormone combination. No increased risk was found among women taking estrogen alone.

Research from the Stanford Cancer Center and the CPIC has revealed how the incidence of breast cancer has varied over time and location, especially in the San Francisco area. CPIC investigators were among the first to report the plummet in breast cancer rates in 2002 after many women stopped taking hormone therapy.

THE BEST POSSIBLE OUTCOME
The scientific collaborations generated by the Women’s Cancer Program enable our specialists to provide cutting-edge treatment options for every patient, including state-of-the-art screening and diagnostic facilities, access to clinical trials in breast and gynecologic cancers and support programs for survivors and their families.

“We are constantly searching for ways to improve on scientific discovery and clinical care,” Dr. Berek said.

“This includes everything from expanding our translational research efforts to setting up a well-run clinic with a receptive, friendly and supportive staff. We have a common goal—that every patient receives compassionate, organized and expeditious cancer treatment with the best possible outcome.”

This approach holds tremendous potential for dramatically improving outcomes for all cancers.

A medical innovator and his wife give hope to future patients

By Susan Scown

With a doctorate in pharmacology, Charles Hsiao, PhD, was knowledgeable about the world of medicine and the role of research in improving medical therapies. When he was diagnosed with multiple myeloma, he realized firsthand how much progress was yet to be made in developing cancer treatments that can eliminate the disease without deadly side effects. Before he lost his battle with cancer in 2008, Dr. Hsiao asked his wife, Pamela Hsiao, to help the Stanford Cancer Center advance innovative research for other patients.

Mrs. Hsiao recently fulfilled her husband’s request by making a generous gift to the Stanford Cancer Center to fund new immunotherapeutic approaches to cancer treatment. Her contribution will be used to support a promising approach being developed by Dr. Edgar Engleman, co-leader of the Cancer Center’s Program in Cancer Immunology and Immunotherapy and professor of pathology and of medicine, and Dr. Samuel Strober, a professor of medicine (immunology and rheumatology).

Previously, Dr. Engleman found that vaccinating cancer patients with substances called antigens from their own tumors along with their own dendritic cells—white blood cells that initiate immune responses—activates the immune system to attack the cancer.

But this approach has not generally resulted in cures of metastatic disease when the cancer has spread beyond the original site.

However, in recent studies, Drs. Strober and Engleman have found that animal models with disseminated colon cancer can be permanently cured of their tumors when vaccinated against their own tumors and then transplanted with their own hematopoietic (blood-forming) cells and T cells (a type of white blood cell). This approach holds tremendous potential for dramatically improving outcomes for all cancers using technology that currently benefits only patients with blood cancers or other hematologic or immune disorders.

“This is an extremely generous and timely gift and, with it, we hope to be able to finalize the procedures needed to obtain Food and Drug Administration approval and begin clinical trials,” said Dr. Engleman.

As founder and board chairman of a biopharmaceutical company, Dr. Hsiao understood the importance of facilitating the transfer of knowledge from the lab to the clinic. Mrs. Hsiao said, “I hope this gift will offer a fitting memorial to my husband’s life and work and give hope to other cancer patients.”

(Pictured above) Pamela Hsiao and Charles Hsiao, PhD.
Branimir (Brandy) Sikic, MD, professor of medicine-oncology, has been awarded the Presidential Medal for Science and Medicine from Croatia’s president. The award recognizes his achievements in cancer research and his contributions to medical education and cancer care and prevention in Croatia.

Sikic is also associate director of the Stanford Cancer Center and is a leading expert in the pharmacology of anticancer drugs. His lab studies mechanisms of drug resistance and predictive therapeutic biomarkers; his clinical research team develops new cancer therapies.

Sikic, who called the award “unexpected and wonderful,” has strong ties to Croatia. His family emigrated from the country to the United States when he was 8 years old, and many family members still live and practice medicine in the Balkan country. (He counts 16 physicians in his extended family.)

Sikic’s work in Croatia began in the mid-1990s, when it “was economically devastated,” he said. “Their national health system was in disarray.”

Croatian physicians lacked the resources to attend medical meetings, so Sikic organized and led the Central European Oncology Congress, a continuing medical education meeting there. The biennial conference draws hundreds of doctors from central and western Europe, with oncologists from the United States, Canada and Europe presenting the latest in cancer therapies and multidisciplinary cancer care.

In 2007, Sikic joined a delegation of medical experts, including Elias Zerhouni, MD, then-director of the National Institutes of Health, to advise Croatian officials on strategic planning in clinical oncology. In addition to spawning projects between the National Cancer Institute and Croatian investigators, a key outcome of the meeting was a 2008 law that banned cigarette smoking in public places in Croatia. Given the prevalence of smoking—even physicians commonly smoke—Sikic considers this one of his proudest accomplishments.

“Now when you go to Croatia and eat at a restaurant you don’t have to inhale cigarette smoke,” he said. “It’s been a major contribution to public health.”

President Stjepan Mesic gave the medal to Sikic, as his wife and three sons watched, on Jan. 19, in Zagreb.

The award recognizes his achievements in cancer research and his contributions to medical education and cancer care and prevention in Croatia.

WHO SHOULD CONSIDER GENETIC TESTING?

CONTINUED FROM PAGE 6

after the benefits, risks and limits of each test are carefully considered. Choosing if and when to test is ultimately a very personal decision.

The following criteria are used to determine who should consider genetic testing for some of the specific hereditary cancer syndromes:

- Diagnosed with breast cancer before the age of 40
- Male diagnosed with breast cancer
- Ashkenazi Jewish diagnosed with breast cancer before age 50
- Diagnosed with ovarian cancer
- Diagnosed with breast cancer at any age and two close relatives with breast, ovarian, thyroid or uterine cancer

Family History:

- Two close relatives diagnosed with breast cancer at age 50 or younger
- A close relative confirmed as carrier of BRCA1 or BRCA2 mutation
- A close relative diagnosed with male breast cancer
- Breast and thyroid or uterine cancer in the same side of the family

For more information, visit: http://cancer.stanford.edu/cancergenetics/ or call (650) 724-4363.

(Pictured above) President Stjepan Mesic (right) of Croatia awards his Presidential Medal for Sciences and Medicine to Branimir Sikic, MD, Stanford Cancer Center associate director and professor of medicine.
Mastectomy and preventive removal of the ovaries are permanent procedures that limit a woman’s fertility. Mastectomy can impair body image, and removal of the ovaries may impose health risks of early menopause. Screening MRI is often recommended for those at higher risk for breast cancer because of its ability to detect abnormalities missed by mammography or ultrasound screening. However, breast MRI may yield false-positive results and is expensive.

How can women with BRCA1/2 mutations and their physicians navigate among disparate and invasive alternatives to manage these breast and ovarian cancer risks?

A study by Stanford Cancer Center researchers may help. The study found that regular mammography plus screening breast MRI offers BRCA1/2 carriers a probability for survival almost equal to that with preventive mastectomy when women also follow standard guidelines of removing their ovaries by age 40. Results of the study, which was a decision analysis designed to evaluate survival and facilitate personalized cancer risk management, may guide women with BRCA1/2 mutations in their choices between these options.

Results of the study, which was a decision analysis designed to evaluate survival and facilitate personalized cancer risk management, may guide women with BRCA1/2 mutations in their choices between these options.

More than 300,000 women in the United States are estimated to carry a mutation in the BRCA1 or BRCA2 cancer susceptibility genes, which increases their risks for developing breast and ovarian cancer by five- to 20-fold.

Cancer risk management strategies for BRCA1/2 mutation carriers incorporate earlier, more frequent and more invasive intervention than those for the general population. Current clinical practice guidelines for BRCA1/2 mutation carriers include preventive surgery to remove the ovaries and fallopian tubes by age 40, and either preventive surgery to remove the breasts or intensive breast cancer screening with mammography plus magnetic resonance imaging (MRI).

Each of these techniques presents drawbacks. Preventive double mastectomy and preventive removal of the ovaries are permanent procedures that limit a woman’s fertility. Mastectomy can impair body image, and removal of the ovaries may impose health risks of early menopause. Screening MRI is often recommended for those at higher risk for breast cancer because of its ability to detect abnormalities missed by mammography or ultrasound screening. However, breast MRI may yield false-positive results and is expensive.

How can women with BRCA1/2 mutations and their physicians navigate among disparate and invasive alternatives to manage these breast and ovarian cancer risks?

A study by Stanford Cancer Center researchers may help. The study found that regular mammography plus screening breast MRI offers BRCA1/2 carriers a probability for survival almost equal to that with preventive mastectomy when women also follow standard guidelines of removing their ovaries by age 40. Results of the study, which was a decision analysis designed to evaluate survival and facilitate personalized cancer risk management, may guide women with BRCA1/2 mutations in their choices between these options.

Sylvia K. Plevritis, PhD, associate professor (research) of radiology, and Allison W. Kurian, MD, MSc, assistant professor of medicine-oncology and of health research and policy at the Stanford School of Medicine, headed the study, published in in the in the Journal of Clinical Oncology (2010; 28:189-191). Both Plevritis and Kurian are researchers at the Stanford Cancer Center. Bronislava M. Sigal, PhD, also of Stanford, collaborated on the study.

SELECTING THE RIGHT OPTION

The investigators used a computer simulation model to analyze various strategies, including MRI screening, for improving survival in women at high risk for breast and ovarian cancers due to inherited BRCA1 and BRCA2 gene mutations. They evaluated the effect of these strategies on the basis of tumor grade, growth rate and hormone receptor profiles that characterize breast cancers of BRCA1/2 mutation carriers.

They found that the most effective single intervention for BRCA1 mutation carriers is removal of the ovaries at age 40 years, yielding a 15 percent survival gain. For BRCA2 mutation carriers, the most effective single intervention is preventive mastectomy, yielding a 7 percent survival gain if performed at 40 years.

Combining preventive mastectomy and preventive removal of the ovaries...
Healing Partners marks fifth anniversary

Technique helps manage the side effects of chemotherapy and radiation

Healing Partners, a program for breast cancer patients run by Women’s Health at the Stanford Cancer Center, has celebrated its fifth anniversary. Healing Partners pairs women diagnosed with breast cancer with a volunteer Healing Touch provider. The program is headed by Kathy Turner, RN, NP, a research nurse practitioner at the Cancer Center and a member of Women’s Health at Stanford.

Healing Touch is a gentle, non-invasive form of energy balancing that promotes deep relaxation. Founded by a registered nurse in Colorado in 1989, it is used to help manage the side effects of chemotherapy and radiation, including fatigue, nausea, loss of appetite and pain. Since its inception at Stanford, the program has served 175 women with a breast cancer diagnosis free of charge.

Among those active with Healing Partners is Catherine Palter, associate director of land use and environmental planning at Stanford University. Palter received support from the organization after being diagnosed with breast cancer in 2005. She was so impressed that she became a Healing Touch practitioner and has volunteered her efforts weekly for the past two years.

She acknowledges initially being skeptical about the therapy, which involves providers placing their hands a few inches above a fully clothed patient to assess energy flow. Providers then lightly touch the patient or move their hands above areas where energy is blocked to increase flow.

“I didn’t expect to feel anything,” said Palter. “I almost immediately felt energy flowing through my body. It was like magic. I believe that it is the reason that I fared so well with the side effects and emotional aspects of breast cancer.”

Palter told the San Francisco Chronicle, which profiled the program in 2008, “It opened my mind up to the fact there are some things in this world that we can’t explain, and that doesn’t make them any less real.”

To learn more about Healing Partners, visit the website at http://womenshealth.stanford.edu/about/healingpartners.html.

Healing Partners, a program for breast cancer patients run by Women’s Health at the Stanford Cancer Center, has celebrated its fifth anniversary. Healing Partners pairs women diagnosed with breast cancer with a volunteer Healing Touch provider. The program is headed by Kathy Turner, RN, NP, a research nurse practitioner at the Cancer Center and a member of Women’s Health at Stanford.

Healing Touch is a gentle, non-invasive form of energy balancing that promotes deep relaxation. Founded by a registered nurse in Colorado in 1989, it is used to help manage the side effects of chemotherapy and radiation, including fatigue, nausea, loss of appetite and pain. Since its inception at Stanford, the program has served 175 women with a breast cancer diagnosis free of charge.

Among those active with Healing Partners is Catherine Palter, associate director of land use and environmental planning at Stanford University. Palter received support from the organization after being diagnosed with breast cancer in 2005. She was so impressed that she became a Healing Touch practitioner and has volunteered her efforts weekly for the past two years.

She acknowledges initially being skeptical about the therapy, which involves providers placing their hands a few inches above a fully clothed patient to assess energy flow. Providers then lightly touch the patient or move their hands above areas where energy is blocked to increase flow.

“I didn’t expect to feel anything,” said Palter. “I almost immediately felt energy flowing through my body. It was like magic. I believe that it is the reason that I fared so well with the side effects and emotional aspects of breast cancer.”

Palter told the San Francisco Chronicle, which profiled the program in 2008, “It opened my mind up to the fact there are some things in this world that we can’t explain, and that doesn’t make them any less real.”

To learn more about Healing Partners, visit the website at http://womenshealth.stanford.edu/about/healingpartners.html.

(Pictured above) Healing Partners Margot Baker (left) and Catherine Palter.
Alice Whittemore, PhD, professor of health research and policy, was named recipient of the Saul Rosenberg Research Award by the Cancer Prevention Institute of California (formerly the Northern California Cancer Center). Whittemore, a noted population science researcher, who is co-director of the Stanford Cancer Center’s Cancer Epidemiology Program, was honored at the CPIC’s 35th anniversary in late 2009.

The award was named for Saul A. Rosenberg, MD, Maureen Lyles D’Ambrogio Professor Emeritus at the Stanford School of Medicine, who was one of CPIC’s founders and its first executive director.

Whittemore and two other award recipients were hailed as “inspirational leaders who have been critical to the success of the center’s mission to prevent cancer where possible and reduce the burden of cancer where it cannot yet be prevented.”

Dr. Rosenberg described Whittemore as “an outstanding epidemiologist, providing important information and insights in the nature and causes of several common cancers [prostate, breast and ovarian cancers]. Especially important has been her providing a valuable link between Stanford University and the [CPIC] over many years.”

A recipient of numerous honors throughout her career, Whittemore won the National Cancer Institute’s Women in Cancer Research Award in 2009.