Associate professor of anthropology, and Cancer Center member, Matthew Kohrman has a keen interest in Chinese language, culture, and society. It is a tribute to his intellectual energy, and to academic freedom, that he has been able to apply these interests to practical concerns regarding the global cigarette epidemic. His work also highlights the need to understand local politics and culture when devising disease prevention programs.

Tobacco remains a scourge. It accounts for almost 90 percent of lung cancers worldwide and is a major cause of heart disease and other cancers. Although smoking rates have declined in some segments of wealthy countries, the toll in China is immense. According to Kohrman, more than 6 trillion cigarettes are produced worldwide each year—more than 2 trillion of these in China. Kohrman recalls his graduate school years in China as “living in a cloud of smoke.” One in eight Chinese men die from smoking-related illness and, if current trends continue, that number will rise to one in three by 2050.

Chinese government policy is partly to blame. Kohrman describes the Chinese cigarette industry as a holdover from the days of central planning; the government controls the industry and has an economic incentive to maintain production. “By the 1980’s domestic tobacco was the top industry tax generator for the government,” Kohrman said. And in an economy marked by high household savings rates, cigarettes are a reliable source of consumer spending.

Although these patterns condemn millions to illness and death, there are signs of hope. The Chinese government is taking some initial steps to protect the public from tobacco. Perhaps most significantly, and unlike the U.S., China has ratified the World Health Organization Framework Convention on Tobacco Control; an international agreement of over 170 countries that delineates standards for tobacco control, including requirements for warning labels on some cigarette packs. Still, when asked about the efficacy of these efforts, Kohrman wryly points to a Chinese cigarette industry handbook on how to subvert the Framework Convention.

Kohrman began research on smoking in China eight years ago when he received a National Cancer Institute Career Development Award. His work questioned the relevance to China of smoking-cessation techniques developed in...
In 2010 lung cancer was the leading cause of cancer death in the United States for both women and men (see graphic). Smokers make up 85-90 percent of cases, but lung cancer is devastating for non-smokers as well, constituting the sixth leading cause of cancer death.

Recent studies performed by investigators from Stanford and the Cancer Prevention Institute of California (CPIC) demonstrate that lung cancer is more likely to occur in women, particularly those of Asian descent. Heather Wakelee, MD, assistant professor of oncology, leads the Stanford team, and the CPIC group includes research scientists Christina Clarke, PhD, and Scarlett Lin Gomez, PhD.

The Stanford Cancer Center has developed a broad-based, interactive lung cancer research program, including research on smoking cessation, earlier-stage detection methods, lung cancer’s basic molecular mechanisms and clinical trials with new therapeutics. The Center coordinates an interdisciplinary group of surgeons, radiation therapists, medical oncologists, pathologists, radiologists and laboratory investigators.

The following pages describe four young researchers working to improve outcomes for lung cancer patients. The stories are indicative of the breadth of Stanford research, ranging from basic laboratory science to understanding the motivations of smokers.

SINCERELY,
Beverly S. Mitchell, MD
Director

SPECIAL ANNOUNCEMENT
I am pleased to announce that on July 1st the Stanford Cancer Center will be designated the Stanford Cancer Institute. The change is motivated by our desire to convey the full span of cancer-related activities occurring at Stanford University and Stanford Hospital and Clinics, including basic research, development of new therapies, clinical trials, patient care, screening, prevention, education, community outreach, and psycho-social support. There has been a tendency for some to identify the Stanford Cancer Center name with a narrower set of activities, and we are anxious to highlight the importance of all aspects of cancer research and care.

TARGETING LUNG CANCER
This issue of the Stanford Cancer Center News describes our multidisciplinary approach to understanding and treating lung cancer—arguably the most vexing of all cancers. On the one hand it is the most preventable; quit smoking tobacco and the risk drops dramatically. But lung cancer is notoriously difficult to catch early or treat effectively. It grows imperceptibly, typically reveals itself only after becoming advanced, and responds poorly to therapy.
Will Graphic Labels Curb Chinese Smoking?

SMOKING CESSATION IN A LAND OF TWO TRILLION CIGARETTES
CONTINUED FROM PAGE 1

the U.S. He then received grants from the National Cancer Institute and the American Cancer Society to develop an anti-smoking manual for China.

Kohrman also played an instrumental role with the Michael Bloomberg Foundation in establishing a non-governmental organization (NGO) in Yunnan Province, a center of Chinese cigarette production. This NGO nudges and assists local authorities to meet the requirements of the Framework Convention. Since 2007, Kohrman has served as co-director of the Global Tobacco-Prevention Research Initiative of Freeman Spogli Center for International Studies.

His work over the last decade has increased Kohrman’s skepticism about traditional smoking-cessation programs, particularly in the complex maze of Chinese tobacco politics. This perspective led him to collaborate with Lisa Henriksen, PhD, a senior research engineer and member of the Stanford Cancer Center, who studies the impact of tobacco marketing and advertising on smoking rates. Motivated by graphic warning labels now used in countries like Thailand and Australia, Henriksen and Kohrman applied for a Stanford Cancer Center Seed Grant to measure the labels’ impact on Chinese consumers.

“Our hypothesis is that when cigarette packs feature graphic warning labels, consumer desire will decline, resulting in decreased sales of cigarette packages with this design,” Kohrman said.

Text-only warning labels currently cover one third of Chinese cigarette packs, and half of the warnings are in English rather than Chinese. Compared to more graphic labels that cover half the front and back of packs in a growing number of countries, the Chinese warning labels are seemingly “invisible.”

Kohrman states that Chinese officials are highly influenced by quantitative data, so it is vital to have numerical measures of a warning label’s impact. “Psychometric research aimed at eliciting an emotive response, the current worldwide standard for investigating cigarette warning labels, is unlikely to be persuasive to Chinese policymakers,” he said.

Kohrman and Henriksen are therefore using a research technique involving “auctions.” They consulted Stanford economists who have extensively studied auction procedures, and are applying this knowledge to the issue of warning labels. Auctions in Southwest China ask customers to bid on different cigarette products to provide quantitative measures of their willingness to purchase packs with, and without, graphic warning labels.

Even with advances in early detection and treatment, discouraging people from smoking remains the best strategy for reducing the global burden of smoking-related disease. Kohrman’s work provides a potent illustration of the need to conduct scholarly research on smoking prevention and to understand the political and cultural context in which programs are implemented.

One in eight Chinese men die from smoking-related illness

Text-only warning labels currently cover one third of Chinese cigarette packs, and half of the warnings are in English rather than Chinese. Compared to more graphic labels that cover half the front and back of packs in a growing number of countries, the Chinese warning labels are seemingly “invisible.”

Kohrman states that Chinese officials are highly influenced by quantitative data, so it is vital to have numerical measures of a warning label’s impact. “Psychometric research aimed at eliciting an emotive response, the current worldwide standard for investigating cigarette warning labels, is unlikely to be persuasive to Chinese policymakers,” he said.

Kohrman and Henriksen are therefore using a research technique involving “auctions.” They consulted Stanford economists who have extensively studied auction procedures, and are applying this knowledge to the issue of warning labels. Auctions in Southwest China ask customers to bid on different cigarette products to provide quantitative measures of their willingness to purchase packs with, and without, graphic warning labels.

Even with advances in early detection and treatment, discouraging people from smoking remains the best strategy for reducing the global burden of smoking-related disease. Kohrman’s work provides a potent illustration of the need to conduct scholarly research on smoking prevention and to understand the political and cultural context in which programs are implemented.

(Pictured above) Comparison of graphic warnings printed on Chinese cigarettes exported to Thailand (left) with text-only warnings printed on cigarettes sold in China.
Joel Neal has been at Stanford less than a year, but the assistant professor of oncology has rapidly gotten engaged. He is pursuing a range of projects and collaborations that have integrated him into diverse aspects of the Stanford Cancer Center’s lung cancer research.

An MD/PhD, Neal divides his time between patient care and research. He is a translational investigator, applying new technologies to the diagnosis, characterization and individualized treatment of patients with non-small cell lung cancer.

Neal estimates that non-small cell lung cancer occurs in more than 80 percent of the patients seen in the Stanford Thoracic Medical Oncology Clinic, and notes that the traditional treatment strategy has been limited: “chemotherapy, followed by chemotherapy, followed by chemotherapy.”

Most non-small cell lung cancers eventually develop resistance to chemotherapies, and the treatment causes significant side effects. Lung cancer remains one of the most deadly cancers.

Fortunately, breakthroughs in molecular biology are delivering more-effective, less-toxic therapies. Molecular testing of tumor cells enables researchers and clinicians to “subtype” lung cancer by identifying specific alterations in the DNA. The goal is to continue developing therapies that target these alterations.

“We hope more patients will have the option to take targeted therapy pills with greater efficacy and fewer side effects than traditional chemotherapy,” explained Neal.

Breakthroughs in molecular biology are delivering more-effective, less-toxic therapies

Supporting this aim, the Bonnie J. Addario Lung Cancer Research Foundation recently awarded Neal a grant for an ambitious genomics and translational research project. Working with Hanlee Ji, MD, assistant professor of oncology, Neal will simultaneously screen lung tumors for hundreds of genes in order to better characterize non-small cell lung cancers, potentially identify new molecular subgroups, and correlate the subgroups with new therapeutic candidates.

“One of my major interests is to help further classify all the types of lung cancer,” Neal said.

Neal is currently involved in two clinical trials for two confirmed non-small cell lung cancer genetic alterations, known as EGFR mutations and ALK translocations. Heather Wakelee, MD, assistant professor of oncology, is leading the ongoing Phase II trial of an ALK inhibitor called crizotinib. In a previous Phase I clinical trial, crizotinib caused dramatic shrinkage of tumors in patients with ALK-positive lung cancer.

These trials are particularly relevant to Stanford patients. While EGFR mutations and ALK translocations make up approximately fifteen percent of all U.S. cases of non-small cell lung cancer, the Bay Area has a larger than average population of patients likely to have these two subtypes, including non-smokers and people of Asian descent.

Neal’s broad perspective has led to other collaborations promising to enhance clinical practice. For example, he is referring patients to innovative nuclear medicine imaging trials that use new PET scanning tracers to improve lung cancer diagnosis and the monitoring of treatment responses. These studies are lead by Sanjiv “Sam” Gambhir, MD, PhD, professor of radiology and nuclear medicine.

Neal also collaborates on several other projects with Wakelee, including her program to characterize...
circulating tumor cells (CTC). Many solid tumors shed cells into the blood. Isolating and characterizing such cells could provide a less-invasive method of determining mechanisms of resistance, as well as a potential measure of treatment efficacy. The investigators are currently evaluating three separate CTC technologies developed at Stanford.

Along with improved technology, Neal believes multidisciplinary patient care is a critical aspect of an integrated lung cancer program. He notes that the New England Journal of Medicine recently published a study showing that early referral to a palliative care specialist not only improves the quality of life of lung cancer patients, but also significantly improves their survival. To this end, Neal participates in weekly multidisciplinary meetings to share data and best practices among surgeons, radiation oncologists, radiologists, and pathologists. He also works closely with Kavitha Ramachandran, MD, clinical assistant professor, who has specialized training in palliative and supportive care in lung cancer.

“The goal is not only to help our patients live longer, but also to live better,” said Neal.

Might a simple breath or blood test diagnose lung cancer? Pulmonologist Daya Upadhyay, MD, is combining molecular biology with pulmonary medicine in order to find out.

Upadhyay joined Stanford in 2002 and her research interests revolve around how genetic changes caused by smoking and air pollution can lead to cancer.

Upadhyay is developing a breath screen to identify cancer-specific gene mutations, and hopefully diagnose lung cancer earlier, more easily and more safely than ever before. The test utilizes advanced genetic engineering technologies, including recently discovered molecules called “micro-RNAs.” Micro-RNAs reveal information about whether the cell’s genetic code is being activated in a manner associated with the occurrence of cancer. If a specific molecular indicator of lung cancer can be found, it will increase the opportunities for early detection and successful intervention.

“Patients with lung cancers identified and treated at an early stage have significantly better chances of survival,” said Upadhyay, an assistant professor of pulmonary and critical care medicine. Lung cancer is considered the most preventable of all cancers, yet one of the hardest to treat. Most lung cancers are asymptomatic in early stages and only discovered after they have metastasized to other parts of the body.

The National Cancer Institute’s recent National Lung Screening Trial (NLST) confirmed the importance of early diagnosis. Patients who smoked for 25-30 years, and are therefore at a high risk for lung cancer, were administered annual CAT | CONTINUED ON PAGE 7
Some researchers focus on a disease and search for its cause. Others, like Julien Sage, PhD, explore basic cellular mechanisms and see where they lead. Sage’s work on small cell lung cancer shows that both strategies are needed.

A developmental biologist, and assistant professor with joint appointments in the Pediatrics and Genetics Departments, Sage investigates the fundamental processes controlling normal and abnormal cellular activity. He is interested in what makes cells divide.

His primary interest is the retinoblastoma (Rb) gene, referred to as a ‘tumor suppressor’ because its usual function is to inhibit cell division. Sage’s group studies the gene’s functions in stem cells, cancer cells, worms, mice and other systems to determine its influence on cell division, replication and how stem cells differentiate into more specialized tissue cells.

Rb malfunction or mutation can cause cancer. When such mutations occur in children under 5 years of age the result may be a cancer of the eye known as retinoblastoma. Rb mutations are also found in most types of adult cancers, including breast and prostate, but typically account for only a small proportion of each type.

Small cell lung cancer is unique in that Rb mutations are implicated in more than 90 percent of cases. Its ubiquity indicates it plays a central role in initiating cancer.

For Sage, these factors make small cell lung cancer an ideal system in which to study Rb. To do so efficiently, he set out to mimic the disease in mice.

“Small cell lung cancer begs for a mouse model,” Sage said. “If you create a mouse with the same mutations, it will represent nearly all human cases of this lethal disease.”

Sage used a genetically altered virus, similar to that of the common cold, to target and knock out the Rb gene, along with another potent tumor suppressor gene, called p53. Infused into the lungs, the virus causes tumors in mice that are pathologically identical to those found in humans with small cell lung cancer.

To advance his mouse model work, Sage received support from the Stanford Cancer Center Seed Grant Program, which in turn led to a larger award from the American Cancer Society. Given the diverse research opportunities arising from his Rb investigations, Sage appreciates Stanford’s multidisciplinary and highly collaborative environment, which enables him to exchange ideas with basic scientists, cancer and stem cell experts, as well as clinicians. The opportunities for such communication grew when Sage and his lab group moved to the Lorry I. Lokey Stem Cell Research Building. Designed to encourage interactions, the building houses both stem cell- and cancer-focused researchers.

“It increases the probability that you’ll meet the people you need to,” said Sage.

Sage is currently collaborating with Atul Butte, MD, PhD, assistant professor of pediatrics and computer science, to search for small cell lung cancer biomarkers. Biomarkers are chemical substances, typically found in blood, that indicate an undetected disease. The PSA biomarker for prostate cancer is a well-known example. Butte will use novel bioinformatics approaches to identify biomarkers in the blood of mice exhibiting advanced tumor growth. Sage and Butte will then work backwards, searching for the same markers in the blood of mice with earlier and earlier stage disease. They hope to eventually develop a diagnostic test.

Sage is also using his mouse model to study the “Hedgehog” pathway: a series of chemical reactions thought to be important in several types of...
cancers. Stanford arguably has the world’s leading group of experts on these reactions, and with their assistance, Sage showed that the pathway is highly active in small cell lung cancer.

Pharmaceutical companies began calling—they wanted to test their Hedgehog-targeting drugs in Sage’s mice. These drugs are so-called “targeted therapeutics,” and have far greater specificity and fewer side effects than traditional chemotherapy.

A candidate compound was chosen, but showed only moderate efficacy. Sage and his colleagues then tried administering the drug to mice after chemotherapy—the standard of treatment in small cell lung cancer—hoping it would prove more potent against tumor cells already stressed by the chemotherapeutic agents. The preliminary findings are positive and could lead to a new treatment strategy for patients with few options.

Sage remains rooted in basic science. Nonetheless, he was buoyant describing the recent realization that his work was so close to helping lung cancer patients: “It was one of the most exciting moments in my career.” His efforts provide a vivid example of the need to support innovative ideas in cancer biology, even if there is no immediate and obvious application to disease.

“Since the test is noninvasive, it may have utility in early cancer detection, monitoring therapeutic response, and detecting cancer relapse,” said Daya Upadhyay, MD

scans, which can detect smaller nodules than can chest X-rays. When tumors were identified and excised from these patients, the early intervention resulted in a 20 percent drop in mortality. But CAT scans expose patients to radiation, which may increase the risk of cancer development. And while CAT scans can detect suspicious nodules, an invasive lung biopsy is needed to confirm diagnosis. Such biopsies carry a risk of complications, particularly in smokers with pre-existing lung damage.

Upadhyay points to another reason to develop a noninvasive early-diagnostic lung cancer test: the incidence of lung cancer in non-smokers. These patients are typically young—age 20 to 50—more often women than men, and may have led healthy lifestyles. They may also have been erroneously treated for pneumonia or other conditions before receiving a lung cancer diagnosis. This delay frequently results in presentation with advanced stages of disease.

“Since the test is noninvasive, it may have utility in early cancer detection, monitoring therapeutic response, and detecting cancer relapse,” she said, “all without causing the problems associated with CAT scans or invasive biopsies.”

Upadhyay joined Stanford in 2002 and now runs the Stanford Lung Nodule program for high-risk patients. She is anxious to develop a full-scale screening program that will correlate the results of breath tests with those of CT scans and biopsies to determine how best to find lung cancers in their earliest stages.

Studies on early diagnosis are being conducted in collaboration with Heather Wakelee, MD, and Joel Neal, MD, PhD, (see Page 4) in medical oncology, Billy W. Loo, MD, PhD, in radiation oncology, and the team of thoracic surgeons in the Department of Cardiothoracic Surgery Medicine. This interdisciplinary group works to develop and advance investigational programs in lung diseases and lung cancer.
Cancer Biology Training Program Joins Stanford Cancer Center

Over thirty years after its inception, the Cancer Biology PhD training program has become part of the Stanford Cancer Center. One of the nation’s first interdisciplinary graduate programs, Cancer Biology trains future generations of cancer researchers to translate basic scientific findings into diagnostics and treatments.

“The Stanford Cancer Center is one of five inter-departmental Institutes within the School of Medicine,” said Center director Beverly Mitchell, MD. “It includes a diverse faculty and helps facilitate synergies among different aspects of cancer research. It is natural for this training program to be part of the Center.”

The 70 Cancer Biology faculty come from 25 different departments across the University; half are basic scientists and half are more clinically oriented. Their students conduct research in basic, translational, and clinical cancer research, including oncogenes, tumor suppressor genes, DNA damage and repair, angiogenesis, tumor hypoxia, tumor immunotherapy and vaccines, tumor profiling and cancer stem cells.

“Stanford Cancer Biology has been a very successful program,” said program director Amato Giaccia, PhD, professor of radiation oncology, gynecology and obstetrics, and surgery. “It has turned out a passionate group of PhD’s and MD/PhD’s who have gone on to achieve prominence. Hundreds of Stanford-trained cancer researchers and physician scientists are leaders in their fields and in institutions nationwide, where they are advancing cancer research, treatment and prevention.”

In 2010 the Cancer Biology PhD program received a record 498 applications. Twenty-five candidates were invited to interview with program faculty. “The selection of only eight participants from these extraordinary 25 finalists was exceedingly difficult,” Giaccia said. “If funding were available, we would gladly accept more students.”

Financial support for the 65 PhD students and seven postdoctoral fellows is a growing concern. The largest external funding source is a National Institutes of Health (NIH) “T32” training grant, which helps support twenty-one scholars each year—fourteen pre-doctoral and seven postdoctoral students.

“With NIH grant support for a year or two, our students have a high success rate in securing their own funding from other sources like the National Science Foundation, Department of Defense, or private foundations, such as Ford Foundation,” said Giaccia.

Supplementary support is essential because the T32 grant provides a maximum tuition reimbursement of $16,000 per student, less than half of the $33,560 Stanford tuition. Even this base payment is not automatic. The current NIH T32 grant expires in June 2012, and the renewal application will be submitted in May. “We have been a very successful program here at Stanford, but there is no guarantee of renewal,” said Giaccia.

Budget pressures at NIH represent another challenge. Like nearly every other federal department and agency, the NIH faces constrained resources. Every aspect of research and training will likely be affected. Anticipating the possibility of decreased funding, Giaccia said, “We are looking at establishing an endowment as the best solution to support current and future students of the Cancer Biology program.”

Continued progress in cancer research depends on uninterrupted entry of new, well-trained and highly motivated scientists. Renewal of the NIH T32, an endowment for the program, and other new funding sources are needed to assure that the Cancer Biology PhD program continues its history of developing well-trained investigators in the basic, clinical, population and behavioral sciences.
Recently, the fund was used to provide a seed grant to a team of Stanford investigators developing molecular-targeted therapy to attack specific proteins or cells involved in the growth and progression of pancreas cancer. Spearheaded by Amato Giaccia, PhD, professor of radiation oncology, gynecology and obstetrics, and surgery, the project aims to tailor treatments based on changes in the microenvironment surrounding the pancreas tumor cells. The investigators believe this microenvironment makes the tumor cells resistant to standard therapies and increases their invasiveness and potential to spread in the body.

Gifts to the Swayze Fund have come from his fans throughout the world. Gifts to the Swayze Fund have come from his fans throughout the world, as well as from donors whose lives have been touched by pancreas cancer.

Gifts to the Swayze Fund have come from his fans throughout the world.

Seed grants, like this one, are a powerful way to leverage donor support, allowing researchers to pursue collaborative studies that otherwise would not be possible, and to accumulate enough data to successfully compete for additional funding. Accordingly, the generosity of donors to the Swayze Fund is empowering Amato Giaccia and other Stanford investigators to provide fresh hope for patients with pancreas cancer.

To support pancreas cancer research at Stanford, please contact the Office of Medical Development at (650) 234-0600 or visit our web site at cancer.stanford.edu/help/gift.html.
“The Stanford Women’s Cancer Center is for our mothers, our sisters, our daughters and all of us who love them.”

— Trisha Yearwood and Garth Brooks

“Under One Umbrella” Scores Another Artistic and Philanthropic Hit

A group of committed local women have played a pivotal role in supporting women’s cancer research and care at the Stanford Cancer Center. The “Under One Umbrella” committee was formed in late 2009 to host a luncheon featuring award-winning actress Nicole Kidman and her husband, country music star Keith Urban. The event raised $350,000 for the Women’s Cancer Center.

The committee held their second fundraising luncheon in December 2010. Chaired by Lisa Schatz, the dedicated organizers include Deborah Berek, Fran Codispoti, Ann Doerr, Susie Fox, Jill Freidenrich, Lainie Garrick, Lisa Goldman, Laurie Kraus Lacob, Jillian Manus-Salzman, Debbie Rachleff and Dianne Taube.

“We are trying to build this together, with input and financial support from the community, to make it really organic,” said Schatz. “This is something we are all working on together with Stanford.”

The luncheon raised more than $1 million for the Cancer Center’s clinical and research programs.

The luncheon raised more than $1 million for the Cancer Center’s clinical and research programs. In addition, Laurie Kraus Lacob has pledged a $10 million gift toward the creation of a Women’s Cancer Center Leadership Fund, which was announced at the luncheon.

The event featured country music stars Garth Brooks and Trisha Yearwood, both of whom have close family members who have suffered from women’s cancers. Their musical performance charmed the audience, and between songs they spoke passionately about the issue of women’s health.

“The Stanford Women’s Cancer Center is for our mothers, our sisters, our daughters and all of us who love them,” they told some 300 guests at the Sharon Heights Golf and Country Club. “We are honored to be able to share in the celebration of this vision coming to life.”

Jonathan Berek, MD, MMS, professor of obstetrics and gynecology, and director of the Women’s Cancer Center, introduced one of the Center’s youngest supporters, 10-year-old Devon Diller. Devon’s mother, Tricia Diller, passed away in 2010 of breast cancer at age 52. Devon turned grief into action with a bike-a-thon fundraiser. On November 14, 2010, she and her Woodside School classmate, Sophia Ashworth, raised more than
$15,000 for a memorial fund in her mother’s name. That fund will provide a special seed grant for promising breast cancer research, Berek said. The Family and Friends of Tricia Diller was among the major sponsors of the luncheon, along with Laurie Kraus Lacob and Nadia’s Gift Foundation.

Don Listwin, founder and chairman of the Canary Foundation, which seeks to accelerate cancer early-detection research activities, issued a $35,000 challenge at the luncheon and encouraged attendees to match it in order to reach the event’s $1 million goal. With his generous example, the proceeds grew from $930,000 to $1,017,000.

The initial fundraising goal for the Women’s Cancer Center—which includes funding for research, faculty recruitment, and patient support—is $20 million. This will help support programs in the new clinical home for the Women’s Cancer Center, a remodeled space in the Blake Wilbur Building, across the street from the clinical cancer center. The 13,800-square-foot facility—double the size of the existing clinic—will provide centralized care for women with breast and gynecologic cancers, and reduce waiting times for patients. The new center is scheduled to open this summer.

“The beautifully designed space will facilitate compassionate and individualized care for our patients,” said Berek. “And we are building an extraordinary program to go with it—one that substantially improves the integration of research and clinical care.” Stanford has already drawn a host of new investigators in the women’s cancer field, and is seeking to recruit several additional faculty members to intensify the effort.

“We’re trying to attract the best and the brightest and strengthen the women’s cancer program,” said Berek.

Berek, who is internationally known for his work in ovarian cancer, said Stanford is working on many different fronts to fight breast and gynecologic cancers. Researchers are developing methods for early detection and prevention of these diseases, new therapies that use monoclonal antibodies and that harness the immune system to attack tumors, genetic-based approaches for detection and therapy, and studies involving cancer stem cells.

Stanford also is expanding its programs in supportive care for women. The new Women’s Cancer Center will offer expanded social and psychological counseling services, support groups, guidance on sexual health, and cosmetic and nutritional services, with concierge-level services for all women’s cancers.

The Center’s planning process has included meetings with former patients for feedback and advice, as well as benchmarking the patient experience. Everyone, including the volunteers raising funds, is excited about providing a better experience to patients and their loved ones.
The first annual Spirit of Hope Award was presented to Breast Cancer Connections, a Palo Alto-based non-profit organization dedicated to setting the standard for compassionate support and supplying comprehensive information for women diagnosed with breast cancer. The award was presented at a donor recognition luncheon on May 4 and is intended to honor a group or individual that has shown outstanding dedication to service, commitment to the community, and support of the Stanford Cancer Center’s mission.

(Left to right) Jill Freidenrich (co-founder of Breast Cancer Connections); Fran Codispoti (president of the board of directors of Breast Cancer Connections) holding the Spirit of Hope Award, and Beverly Mitchell, MD, director of the Stanford Cancer Center. Photo by Steve Castillo